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What isMHD?Why dowe needMHD?

MAGNETO-HYDRO-DYNAMICS

MAGNETO =⇒magnetic field involved
HYDRO =⇒ electrically conductive fluid, e.g. plasmas

DYNAMICS =⇒ study of the forces and torques determining themotion

With the exception of planet’s atmosphere, plasmas andmagnetic fields are
common ingredients of each and every astrophysical system!
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MHDand Jets

Where dowe find plasma andmagnetic fields in astrophysical systems?
Accretion
Wind
Jets

Each of these phenomena can be described by a system ofMHDnon-linear
equations.
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MHDapproximation
MHDapproximation= simplified fluidmechanics+Maxwell’s equations
ASSUMPTIONS:

Fluid approximation: local thermodynamic quantities can bemeaningfully
defined in the plasma, and variations in these quantities are slow
comparedwith the timescale of themicroscopic processes in the plasma.
In the plasma there is a local, instantaneous relation between electric field
and current density (Ohm’s law).
The plasma is electrically neutral.

GOAL:
Solution of equilibrium of forces perpendicular (Grad-Shafranov
eq/TORAMAK) and parallel (Bernoulli eq for polytropic EoS) to themagnetic
surfaces.
MAIN ISSUE:
3 critical surfaces, fromwhich constants of motion (CoM) are derived.
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IdealMHD
IdealMHD: perfectly conductive fluid, i.e. infinite magnetic Reynolds number
(Rm ∼ σ0), therefore E-field= 0, but only in the fluid/comoving frame (K’)!
MAXWELL EQNS:

E = −v ×B/c

O ·E = 4πσ

O ·B = 0

4πj + ∂E/∂t = cO×B =⇒ ∂σ/∂t+ O · j = 0
NR
=⇒ O · j = 0

∂B/∂t = cO×E =⇒ ∂B/∂t = O× (v ×B)

FLUIDDYNAMICS EQNS:
FL =

1

c
j×B =

1

4π
(O×B)×B

%
dv

dt
= −Op+

1

4π
(O×B)×B− %Oφ

∂%

∂t
+ %O · v = 0

P = Q%γ
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Bernoulli and Grad-Shafranov equations
EoMp : Integrating the projection, we get the energy orBernoulliequation

1

2
v2p,A =

(
kinetic

flux

)
+

(
entalphy

flux

)
+

(
gravtnl

flux

)
+

(
Poynting

flux

)

EoM⊥(⊥SB) : Grad-Schlüther-Shafranov or Transfield equation
quasi− linear PDE for ψ($, z)

CoMs : Field line constants: Ω,ΨA, L, µc
2, Q

¢ Highest order derivative terms vanish at AP in GSS eqn!
TheAlfvén regularity condition: solved for the slope of the solution of the
Bernoulli equation at AP, pA.

¢¢ In the Bernoulli eqn, twomore critical points: when vp,A = vs (slow) and
vp,A = vf (fast).

ANY REGULAR SOLUTIONOFBERNOULLI EQNMUST PASS BOTHMSP,MFP!
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Approach: I (Weber &Davis, 1967)

MAINASSUMPTIONS: fixed shape for magnetic field, i.e. non GS eq.!
SYSTEM: only⊥ forces, i.e. Bernoulli equationfrom slow and fast magnetosonic critical surfaces we get 2CoM:

CoM1: mass-to-magnetic-flux ratio,ΨACoM2: total energyE(ψ)

PROS: determination of asymptotic speeds
CONS: no info on collimation
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Approach: II (Suess &Nerney, 1973)

MAINASSUMPTIONS: none, but only numerical. Perturbation of a spherically
symmetric, iterativemethods, etc.

SYSTEM: full system
PROS: true shape of the field lines
CONS: only numerical
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Approach: III (Blandford & Payne (1982),
Vlahakis & Konigl (2000,2003), etc.)

MAINASSUMPTIONS: specific dependence of the flow variables on the
independent variable (self-similarity assumption)

SYSTEM: full system, but reduced number of independent variables, in
most of the cases to just one.

PROS: accounts for the force balance
CONS: not regular/valid in the whole parameter space

not properly accounting forMFP (?)
singularity for electrical current along the axis of
symmetry
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Other approaches

IV: Variational approach (Rosso & Pelletier, 1994)
V: Slender jet approximation (Koupelis & vanHorn (1989),
Koupelis (1990))

... ...
...and this is only until 1999 (Lery at al, 1999)!

MHD lecture



Magnetic force and curvature force

Lorentz force is perpendicular to the B-field. Alongmagnetic field lines, only
hydrodynamic forces act.

FL =
1

4π
(O×B)×B

= − 1

8π
OB2 +

1

4π
(B · O)B

The curvature force term for an axisymmetric azimuthally directed field (=Bφ̂)
in cylindrical coordinates ($,φ, z), considering that φ̂ · Oφ̂ = −$̂/$, looks like

1

4π
(B · O)B = −B

2

4π

$̂

$

The curvature is directed toward the centre of curvature: HOOP STRESS!
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Stream function
In cylindrical coordinates, an axisymmetric field is constant wrt the azimuthal
coordinate, i.e. ∂B/∂φ = 0 andwe can decompose the field as

B = Bp($, z) + Bt($, z)

in particular
Bp = (B$, 0, Bz) = − 1

$

∂ψ

∂$
$̂ +

1

$

∂ψ

∂z
ẑ

Bt = Bφφ̂

where the flux/stream functionψ is defined as
ψ($, z) =

∫ $

0

$Bzd$

and it equals, apart for a factor 2π themagnetic flux contained in a circle of
radius$.
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Alfvén&Magnetosonic waves
(2D-)Problem

homogeneous B-field in a uniform fluid initially at rest
+

small perturbations inB, p, % at later times
Alfvénwaves
B→ B + δB,
δp = δ% = 0

Ionwaves
p→ p+ δp,
%→ %+ δ%,
δB = 0

Magnetosonic waves
p→ p+ δp,
%→ %+ δ%,
δB = 0
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Waves’ Properties
ALFVÉNWAVE
- Incompressional, i.e. δp = 0

- Torsional/Transversal/Shear, i.e.
δB(‖ v)⊥B(‖ k)

SLOW/FASTMAGNETOSONICWAVE
- Compressional, i.e. δp = 0

- Longitudinal, i.e. (δB ‖ v ‖ k)⊥B
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(Radial) Self-similar models
Starting fromBlandford & Payne (1982), several self-similar models for
accretion/wind/jet have been developed, with common characteristics.

- Assumptions:
ideal, time-independentMHD
axisymmetry
zero azimuthal E-field
no external forces
(self-similarity)

- Uknown functions:
M(θ)
G(θ)
ψ(θ)
ξ(θ)
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DeterminantMethod
Bywriting the transfield equation and the derivative wrt θ of the energy
equation as follows

A1
dM2

dθ
+B1

dψ

dθ
= C1 Energy eqn

A2
dM2

dθ
+B2

dψ

dθ
= C2 Transfield eqn

whereAs,Bs andCs are functions of θ and all the unknown functions
M,ψ,G, ξ. Combining themwith the determinant method, we get

dM2

dθ
=
C1B2 − C2B1

A1B2 −A2B1
Wind eqn

dψ

dθ
=
A1C2 −A2C1

A1B2 −A2B1
ψ eqn

¢ If gravity is accounted for, gravity terms are included inC1 andC2.
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Solution’s properties

Complete regular solutions are
crossing smoothly each of the
singular point, MSP, AP,MFP.
Numerator and denominator of
the wind equation cross zero in
the same point at the same time.
When a solution crosses one of
the point of interest, we can
extrapolate information about the
system (the velocity of the wave,
the radius of the jet/wind, the
position of the
shock/acceleration/recollimation
region, etc.)
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Alfvén surface problem

The coefficientsAs,Bs andCs at the AS have singularities of the kind 0/0, that
can be eliminated applying de l’Hôpital rule. Unfortunately there are some
problems left...
Simply bymultiplying the eqns by the factor fMx = (1−M2 − x2), we can
easily demonstrate that the system collapse into a single eqn on AS

��∞
dM2

dθ
+ 0

dψ

dθ
=��∞

��∞
dM2

dθ
+ 0

dψ

dθ
=��∞

therefore the determinantmethod doesn’t hold on AS and the derivative ofψ
is not determined.
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Isolating the infinities
By noticing that(

A1,∞ +A1,�∞
) dM2

dθ
+B1

dψ

dθ
=
(
C1,∞ + C1,�∞

)
(
A2,∞ +A2,�∞

) dM2

dθ
+B2

dψ

dθ
=
(
C2,∞ + C2,�∞

)
and, that after rearranging terms, we have(

A1,∞
dM2

dθ
− C1,∞

)
+A1,�∞

dM2

dθ
+B1

dψ

dθ
= C1,�∞(

A2,∞
dM2

dθ
− C2,∞

)
+A2,�∞

dM2

dθ
+B2

dψ

dθ
= C2,�∞

⇓ ⇓

dM2

dθ

∣∣∣∣
A

=
C1,∞

A1,∞

∣∣∣∣
A

=
C2,∞

A2,∞

∣∣∣∣
A

= pA ARC

A1,�∞
dM2

dθ
+B1

dψ

dθ
= C1,�∞

A2,�∞
dM2

dθ
+B2

dψ

dθ
= C2,�∞

MHD lecture



Currents status of the new solutions
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Conclusions

In most of the astrophysical systemswe observe evidence of magnetized
outflows/inflows of plasma
We study the phenomenon using theMHD approximation formalism.
Several approaches can be adopted to solve theMHD system of equation.
Self-similar model have some disadvantages amongst which the fuzzy
parameter space seems to be themost difficult to overcome.
Using the determinant method, removing by hand the singularity at the
AP, gives us a few solutions, all of them in the same narrow region of the
parameter space.
The new formulation of the equations that tries to handle the singularity
at the AP and avoid using the determinant method, hopefully will provide
amuch larger number of solutions by allowing us to explore a wider region
of the parameter space.
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